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TECHNICAL MEMORANDUM 1311 ,

CONTRIBUTIONS TO THE THEORY OT

OF A FREE JET ISSUING FROM

By W. Szablewski

THE SPREADING

A NOZZLE*

PART I.- THE FLOW FIELD IN THE CORE REGION

AJ3STRACT:

For the flow field of a free jet leaving a nozzle of circular cross
section in a medium with straight uniform flow field, approximate formulas
are presented for the calculation of the velocity distribution and the
dimensions of the core region. The agreement with measured results is
satisfactory.

OUTLINE :
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II.

III .
IV.
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VI.

INTRODUCTION AND SURVEY OF METHOD AND RESULTS
CALCULATION OF THE FLOW FIELD

(a) Velocity Distribution in the Core Region
(b) Dimensions of the Core Region

COMPARISON WITH MEASUREMENTS
suMMARY
REFERENCES
APPENDICES

No. 1 Calculation of the Transverse Component
No. 2 For Calculation of the Dimensions of the Core Region

I. INTRODUCTION AND SURVEY OF METHOD AND RESULTS

Khowledge of the flow field of a free jet leaving a nozzle is of
basic importance for practical application.

Investigation of such a flow field is a problem of free turbulence.

In theoretical research the following specialized cases of our
problem have already been treated:

(a) The mixing of two plane jets, the so-called plane jet boundary.
These conditions are encountered in the immediate proximity of the nozzle.

*“Zur Theorie der Ausbreitung eines aus einer D~se austretenden freien

Strahls.” Untersuchungen und Mitteilungen Nr. 8003, September 1944.
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(b) The spreading
point-shaped slot in a
spreading. This state
from the nozzle.

,. ,. NACA TM 1311

of a rotationally-symmetrical ,jetissuing from a
wall, the so-called rotationally-symmetrical jet
defines the’”conditions at very large distance

In considering a free jet leaving a nozzle of circular cross sec-
tion, we may subdivide the spreading procedure, according to an essential
characteristic, into two different regions:

(1) Region where a zone of undiminished velocity is still present
(the so-called jet core). We shall call this range, which extends from
the nozzle to the core end, the core region. For the immediate proximity
of the nozzle the conditions of the plane Jet boundary exist.

(2) The region of transition adjoining the core region which is
characterized by a constant decrease of the central velocity. Thi S

region opens into the region of the rotationally symmetrical jet
spreading mentioned above.

So far, there exists only an investigation concerning the core
region (reference 1); it is limited
medium is in a state of rest.

Method and Results

to the case where the surrounding

In the present paper, the spreading of a jet in the core region is
treated for the general case where the surrounding medium has a straight
uniform flow field (or, respectively,, where the nozzle from which the
jet issues moves at a certain velocity through the surrounding medium at
rest) .

The theoretical investigation is based (reference 2) on the more
recent Prandtl expression for the momentum transport

One then obtains in the rotationally symmetrical case the following
equations:

Continuity: .

-1
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Momentum transport:

I

where

,,. ,,,.,
lq

‘-b

With reference to

,.

we introduce,

i

e = Kb(x)(ul - Uo):

,,
= velocity at the jet core’

.:”.

,.

= velocity of the.,sqrro~ding medim
,’

.

( )q>l+) ,

the present problem

,,:

1 as independent variable. We obtain:

Continuity ,.,

(,+ :)(x g - ,’~)+; +(, +”:)~:o
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Momentum transport

Velocitv distribution in the Core Reszion

We limit our considerations at first to small disturbances of the
flow field; that is, to relatively small differences in velocity

(

U1 - U.

)
small quantity . The partial differential equation for the

u.
J-

momentum transport may then be linearized

where

E(x)
‘1 - ‘o= rcb(x)

U1

(It shouldbe noted

is transformed into

that by the transformation v = ~
~

this equation

the equation

r- r.
which represents a heat conduction equation.) With ~ = ~ instead

of r one obtains from the equation of momentum

$+$r$’+l>’g=o
if
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This equation is a linear partial

of parabolic ty-pe. For the plane

equation

differential

(

‘o
case y+

5

equation of second order

)
m this results in the

r.

.
with

b(x) U1-1.lo
therein c = lim y and is to be regarded as a function of

U1 “
%0
‘o

With the boundary conditions taken into consideration, the integration
yields

with

a-

0- /2+)

We now obtain an approximate solution of our problem by generalizing
the plane velocity distribution and setting up the following formulation:
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With

U2,(X) =

NAC~ TM 1311

,, ... . . .,

,.

“ dx)=~$t+: ~~““ : ,(,:

(#-(w=‘(a
we obtain a function which corresponds to the exact solution for small

~ as well as for large positive ~, thus in boundary zones of the
‘o
region of integration as well as in the interior of the region along the
jet rI= O.

If we now consider larger disturbances, the solutions obtained for
small disturbances are to be regarded as a first approximation.

For the plane case the solution for arbitrary
‘1 - ‘o

already
‘1

exists, compare G6rtler (reference 3). It is found that, purely with
respect to shape, even the first approximation represents a very good
approximation. The velocity dist~ibution calcula~ed by G&tler still
shows an uncertainty insofar as u(m + a), with u(T), also represents
a solution. This uncertainty here &y be”eliminated,”
jet core vanishing of the transverse component ~ is
with the initial profile of the velocity distribution

U1 - ~ is then unequivocally fixed.

If we limit ourselves,
mation, the initial profile

with respect to shape, to
is

because for the
required. There -
for arbitrary

the first approxi-

where

()‘1 - ‘o
E =UOV - 0.36 U1
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and

,. -. .

For the further development of the profiles starting from this initial
profile the regularity found for small disturbances is then taken as a
basis

where

q* u‘1 - ‘o= Ulq- 0.36 + 0’
‘1

U1-uo
For -O, this function is transformed into the approxi-

U1

mation function constructed for small disturbances. How far it may be
considered an approximation in the region f~l arbitrary disturbance is
not investigated in more detail.

The functions appearing in the integral al(x), a2(x) resu?.t from
the approximation calculation for the dimensions of the core region,
carried out on the basis of the momentum theorem.

Calculation of the Transverse Component

The transverse component ~ of the flow is determined from the
continuity equation

or v=-
(q ~~j[ [’l ‘?)(XE -~ ~)d, respectively, tit, OW

x
approximate function being substituted for =.

— .— ————
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The integration constant is determined from the requirement that
at the jet core the transverse flow component vanishes.

In order to avoid complication of the calculation, rectilinear
course of the mixing width b(x) is assumed. This assumption proves
approximately correct as results from the calculation of the dimensions
of the core region.

Dimensions of the Core Region

The dimensions of the core region (jet core and width of the
mixing zone) are calculated according to a formulation of the momentum
theorem

F - %)=- %~ w %)r‘r (=r-rxy)

= r(Kb(x)(Ul ‘%))*,

indicated by Toll-mien (reference 4).

The occurring integrals as well as the ~ defining the shearing “

stress are determined approximately with the course of the velocity
distribution assumed rectilinear

Then there result for the limiting curve d(x) of the jet core and the
width b(x) of the mixing zone two ordinary differential equations of
the first order which can be reduced to one equation

dy
— = f(x)
dx

This integral can be represented with the aid of elementary functions;
however, for simplicity its calculation here is performed by graphical
method.

K appears as the only empirical constant which results by compari-

son with measurements given by Tollmien (reference 4) as K = 0.01576.
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Comparison with Measurements

In order to carry through

9

a comparison between theory and experi-
11= - 11-
–1

ment, a measurement for the case
-u

= 0.5 was performed with the
U1

test arrangement described in reference 5.

The comparison with the theory offers satisfactory results if one
takes into consideration that the effective radius of the nozzle flow
referring to a rectangular velocity distribution is different from the
geometrical radius.

II. CALCULATION OF THE FLOW FIELD

(a) Velocity Distribution in the Core Region

We base the theoretical investigation on the more recent Prandtl
expression for the turbulent momentum transport

e(x) = Kb(x) –&x - –~in

where K . dimensionless proportionality factor, b = measure for width
of the mixing zone, and ii = temporal mean value of the velocity.

We have at our disposal, for calculation of the flow field, the
continuity equation and the momentum equation for the main direction of
motion, which read in rotationally-symmetrical rotation

Continuity

Momentum transport

a( r;) a(r;)
-&---&--&--=o

~aii –aii (a2iiG(x) — +Iaii—=
Z+vih-

——
&-2 r & )

where

~(X) = tcb(x)(ul - ~)
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U1 = velocity of the issuing jet

% = straight uniform velocity of the surrounding medium

q>q)

We may integrate the continuity equation by introduction of a flow
potential v

The momentum equation then is transformed into

where e(x) .= .b,x,(”’ :>) if we make the velocity dimensionless by

division by u1. Accardi~ to a method applied by G&tler (reference 3)
we set up for $ the expression

,=*o+(u’J’)vl+(yp)12+...
developing $ in powers of the parameter P ::).

Therein to is

the potential of an undisturbed flow ul .
(

~); thus
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If we enter with this formulation into the differential equation, we
obtain

If

of

one arranges

differential

J.
-J

—

L

11

according to powers of
(u,; %)

one obtains a series

equations for $~, $*, “ “ “

.
,

{A
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or, taking

NACA TM 1311 ●

into consideration

32+.

etc.

On the Theory of Small Disturbances

In the following, we shall limit ourselves at first to small
disturbances of the flow field; that is, relatively small differences

(U1-uoin velocity
U1 )

small quantity .

The velocity field is then defined

Since
E

= R, the above equation

follows:

by the flow potential $1.

for $1 may be written as

G(X) = Kb(x)
(u’; ‘)

Therewith we have attained for small disturbances a linearization of
the equation of motion.

(It should be noted at this point that by the transformation

.—‘-& our equation is transformed into

..— .—,-—.. , ,. -,, ,,, ,, , ,,, ,-. I I Immm I a I ,1 I
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With reference to Reichardt’s discussions (reference 6),it is of
interest to point out that this equation”is of the type of a heat
conduction equation.)

._.- .,

In view of the conditions existing in our problem

(rO = nozzle radius, x = distance from the nozzle in directiorl of the

r- rO
jet axis), we introduce instead of r the variable ~ = x . Thi S

coordinate transfo~ation yields

thus the equation

or, respectively, for q + ~+o

...

11111:
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Lx -1

This equation is a linear partial differential equation of the second
order of parabolic type.

by

of

of

The solution of this differential equation is fixed unequivocally

the initial condition that for $ ---+0 the velocity distribution

the plane jet boundary appears.

We first derive (for small disturbances) the velocity distribution”
the plane jet rim.

For ~—->O we
r“

with

b(x)
Therein c = lim ~

Lo
rO

obtain with the expression =(q) the equation

[1*LO = U1l-u“
r. Kc

U1

and is to be regarded as
U1-1+)

a function of
U1 “

With the boundary conditions

ul for ~~-rn
;+

~ for ~+ +rn
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taken into consideration, the integration yields

15

..- L

with

“o=&
“Turning now to our problem, we can expect great
strutting the exact solution. We limit ourselves therefore to forming
an approximate solution. For this purpose we generalize the plane
velocity distribution (the initial profile) and set up the following
expression

difficulties in con-

1 () %
F— l+U1

This formulation insures at the outset a reasonable shape of the
approximation solution.

For U1,U2. there immediately result, because of the initial
condition, the requirements

Now the following equation is valid:

lim u’(x) = o

$+0

= lim

~-+o
r.

.,

I
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Accordingly, we put .,
..

Furthermore we take care that our approximation statement for small ~

yields the exact solution. This will be the case when the

()
2 Lo

()

aii r.

of the approximation statement agrees with the ~ to be calculated

from the differential equation for ~ = O.
ro

According to the differential equation:

Thus

or, with

E(x) 1—= —
x

2012

(%):=o=:,o+-

+

+

aii

()x~
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enter into this equation
put (except for a common

,..
.—

17

with our approximation expression; that
factor)

[1at-’—= e
Ax ( )

ul’~ + u“
—

“r o

We then consider the relations

h-m
—

lim al = 00 .
1

Lo U1-uo

‘o
2Kc

U1
L —

.

lim 02 = O

=0
‘o

furthermore, we assume

lim IY,”=O
L

~--+o
‘o

The last relation signifies that the width b of the mixing zone is,
in the proximity of the nozzle, of rectilinear character, an assumption
which seems justified considering the fact that we approach, in the
proximity of the nozzle, the conditions of the plane jet boundary.

We then obtain for the left side of the equation

.

.
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for the right side

“[
a%aii — 1

a;22

lim L~+h
2+&Tal

1

[ 1
2a02a2’ (0) e-(uorl)2

()
‘—ao-20121+ -%

()

x

~-+ o
2003

r.
,ro ~

Equating yields the equation

U2’(0)

or respectively,

1

200–[ 2 ‘o 12CY02CJ2‘(o)

U2’(0)=+

This results in
()~2=&: for small ‘.

‘o

This guarantees first of all that our approximation expression

for >-O represents the exact solution.
r.

If we enter with the approximation expression thus constructed into ~
the differential equation, we recognize immediately that the latter (due

to the factor e-E1’l+”a2 (is satisfied also for v ~ m and

)arbitrary 3 .
r.

Thus our approximate .expression with Ul, rY2 fixed in
manner yields a function which corresponds in boundary zones
region to the exact solution.

the above
of the

As to the behavior of our function in the interior of the region,
it is found that the function in case of suitable “continuation” into
the interior of the region satisfies the differential equation along v = O.

For ~ = O the differential equation reads

–=~(~[$+%gj :

ac
ag
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If one enters with the approximation

E(x) -
x

one obtains

expression and considers

“1

2012

1 ( )[r.
a2 i . — — - 2a2al

(1

2+a1~
2a12 x

or

As solution one obtains

x—

For small ~ one has again

We may also write

Therewith we.have obtained for small disturbances the following
afiproximation function

19
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where
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To SLMl Up: This function satisfies the differential equation with

the initial conditions prescribed for small ~ as well as for large
r.

positive q; in the interior of the region it satisfies the differential

equation along the jet q = O. Therewith we have constructed an approxi-

mate function which in boundary zones of the region of integration and
in its interior along the jet ~ = O is to be regarded as exact solution.

On the Theory of Larger Disturbances

U1-u.o
Let us now consider larger disturbances not a small

U1
--L

quantity .

First, we shall treat the problem of the initial

G&tler’s calculations (reference 3) showed that

(

U1-uo
approximation for small

)
represents, purely

U7

profile.

even the first

with respect to

shape, a very g-oodapproximation.” This applies, however, only to the

shape of the distribution curve - not to its position. The velocity

distribution calculated by G6rtler is unequivocally fixed by the
U1 - Uo

arbitrary requirement that ii(0) = * . However, G&tler

points out that with ii(ll), T(q), the equations u* =li(~ +a),

v+ =~(~+a)-aii(~+a) also represents a system of solution. But
this remaining uncertainty is here ~liminated by the fact that for the
jet core the transverse component v must vanish as follows from the

continuity.

If ti(~), V(q) is the velocity distribution calculated by G6’rtler

‘1 - ‘o
which is characterized by H(O) = z , the quantity a must there-

fore be determined in such a manner that ‘1 - aul = O which
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fields a = $. Taking G&tler’s calculations as

in first appr~ximation.—-. ,,

a basis, one obtains

“’thus

Therewith the initial profile for all
‘1-%

is unequivocally
U1

determined. If we base the shape representation-on the first approxi-
mation, the initial profile is

where

E. ‘1 - ‘o= Oo11- 0.36 u~

and

‘O=
1

For the further development of the profiles in the core region,
starting from this initial profile, we take as a basis the regularit~
found for small disturbances.

,., ,,, ,,,,,-.,.,-, -.
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where

‘1-%”~x = Ulv- 0.36 +m-
U1

with the terms al(x)) a@ determined before.

This function therefore yields the initial profile in first approxi-
mation. How far it may be regarded as approximation in the region is

U1-uo
not investigated in more detail here. For ~0 it is trans-

U1
formed into the approximate function found for still disturbances.

Our approximate function generalized to arbitrary disturbances
therefore reads

where

with

al(x) =

ul-~
0.36 + 02

U1

The coordination to q is obtained by
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where
,,,

x—
.— .

I

‘“Thus the curves result from one another’by similarity transformations.

knowledge of theCalculation of the curves reauires. furthermore,
functions al(x), IYp(x) and, re~pecti~eiy, of”the mixing wi~th b(x)
and the constant K.- These quantities result from the approximate
calculation (carried out with the aid of the momentum theorem) for the
dimensions of the core region.

Figure 1 contains for the parameter values
.,

U1 - Uo
= 1.0; 0.8;0.6;0.4;0.2

U,l

= O and the core end.the velocity distributions ~ calculated for ~
U1 r.

In figure 2 the functions Ul(x) and IS2(X)

parameter values named above, as functions of ~
r.

are plotted for the

up to the core end.1

!

! Calculation of the Transverse Component

The transverse component T of the flow is determined from theI

continuity equation

and, respectively

r+o

I

I

I
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Transformation

1

r- r.
of r into q== results in

The integration constant is determined from the requirement that in
the jet core the transverse component 7 must vanish.

As the Iower limit we.choose accordingly the \ determined by the
bounding of the jet core (concerning the dimensions of the core region,
compare next paragraph).

In order to avoid complicating the calculation, a rectilinear course
of the mixing width b(x) was assumed. This assumption is approximately
correct. (Compare fig. 11.)

For the velocity distribution ~ we substitute our approximate

function. The performance of the calculation (appendix no. 1) yields
the following final formula.

where

,



NACA TM 1311 25

{}{
III =

( )( )-[1 e-[J2 +[]0 e~102 + 2 U2 - ‘1 ~luo ~-E12 + e-C102 +0.36
,,...=”. .(.., ,, .,.. ,,

[(k ;+ u2-0.36u1u~u0)J (‘b + ‘1%0 $

Therein

“lq-uo
[1= (Uln-0.36 U1 + a2)

U1-uo
[]o=(a~’~k- 0“36 U1 ‘U2)

f

[1 JJ2 ~‘,‘1’=$()

and 3?1’[1 and ‘1’-[10’ respectively, signify the values of the error

integral taken at the points c] and -[l., respectively.

In figures 3 to 7

()xa section =0.1g
length are plotted for
0.2.

the distributions of the transverse component for

near the nozzle and a section of 3/4 of the core
ul-l_Q

the parameter values = 1.0, 0.8,0.6,0.4,
U1

h
In the case L “ = 1.0 there are shown, moreover, the distri-

‘1
butions for the sections 114 of the core length and the core end itself.

(Remark: The transverse components calculated for the core end seem
to yield too small values of the approach flow; the reason is that the
poor approximation of the velocity distribution, an essential charac-
teristic of the Prandtl expression, in the boundary zones takes the more
effect in the calculation of the ~ component the more one approaches
the core end.)

U1-uo
For small , the transverse component becomes verysmall

(note the different”~cales in the various representations).
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(b) The Dimensions of the Core Region

.

I

The dimensions of.the core region are defined by the limiting curve
of the jet core d(x) and the width of the mixing zone b(x) or,
respectively, the outer limiting curve of the latter b(x) + d(x).

According to Kuethe’s procedure (reference 1) we take as a basis
the theorem of momentum in Tollmien’s formulation (reference 4).



1
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! If one nmrks off a control area in the indicated manner, one
obtains in the rotationally symmetrical case

1,

;. .

(=-w)=-:’~m~(~-%)rd]=(~.Y) ““
I

I %
= velocity of the medium surrounding the jet.

I

According to the more recent Prandtl expression

‘Xy = tcb(x)(ul - )-%%”
I

I

I
I

Thus we obtain, if we, furthermore, take the limits of the tiixir4$.
zone into consideration

I According to the existing condition we transform (according to Kuethe)
with

d(x)

~=%- “.

Then

I
If we make, in addition, the assumption that ii depends only on q,

not on x, there follows

,
I

-j”%) [-q2bb’ - 1n(bd’+b’d) - dd’ ~.
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For ~ we finally insert the continuity equation

or

‘= -*1’ w’2bb’-’(’” ““) - ‘dld~
For approximate calculation, we write for the velocity distribution the
sample expression

u, = (y ‘)(1-7)
ii-uo

d(x)

~=%

This expression, which may be regarded as a first rough approximation
for the velocity distribution, will probably

for the integral calculation. The value ~

stress also will probably result in a usable
central region of the mixing zone.

The result is

d
~

(1) We
integration

lead to not too large errors

determining the shearing

approximation for the

now put r = O. The momentum theorem is then transformed by
into the form of the theorem of conservation of momentum

&b+’w- Uo)r ‘r = Const

. ...
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or

- ~d(x).1(.1 %)r’r +~d+bm-‘& ‘r= U,(U1-‘JO)$

(U1 U1 - Uo)$ ‘J& -%A’+
2

(.
d)b d? = U1 U1 - %“) ~

If one inserts I=p::) (1 - q) and carries out the integration,
U1

one obtains

or

(2) In order to obtain a “second equation between b and d, we
put r = rO.

If one performs the somewhat lengthy elementary calculation, one
obtains finally (compare appendix. no. .2]. .

b’~,,p[,p;dy+g+i( ro;df -]+

.{+)[,(ro;’~+j+,(ro; ’~.-,]+{’1’+ b“)” ‘1

dd,~~.d)-” ~’= - ro~(ul ~fl) ““

i ——
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The theorem of conservation of momentum reads in differentiated
form. (Compare (l).)

[

bb’ ; -

By addition

( )]lU1-% +
z U1

(b’d r+bd’) :
L (iJlU1-%

i5 U1

of the two equations one obtains

+ ddf
{}
1 =0

(3) we now proceed to determine b
obtained. We replace b in the second
the function which we obtainby solving
to b.

where

a2 .

and d from the two equations
equation by the expression for
the first equation with respect

L=a&3)‘I=@r.

ao=-

“’’-3+)



I

NACA TM 1311 31

I

I

,

1

I
,

1

(
a2d

b’ x 80 - (---)—.d’

al
- a2d2

Substitution then yields

—

L d

with

‘1 =

We obtain

f2 =

d

(]
a2 ~

+

+

x
as a function of ~

~ r.

d(x) =-: 1
ul-~

‘1 - u~

( “)(

U1-uo )
f2 d(d)

U1

d—
~,

‘:)=-;(”’’.3L‘f’-u’::f2)d($
The evaltition of the

by analyti~al method since

integral could, in itself, be carried

the integrand is built rationally in

. .

. .

out
d— and

‘o
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a square root. However, the breaking up into.partial
has to be done in this procedure is very troublesome.
advisable to perform the evaluation graphically.

- .

fraction which
Hence it is

ForL=l the integmnd
ro El -p :>)%J assumes the indefi-

0
nite expression ~. The limiting value is

() () a2

lim
( )

fl-h-uo f2=Lao+%+il-uo T 1.—
U1 2 2

4-+1

()

al
r. T0

( q ) a;;f (~)

Tf $“ was determined,

of J% b(x) results from
ro

The relation

analytically or graphically, as a function

=2=, = - ‘h”::)(ao‘3()db
r.

:im,,lfl -F::)fj

‘o

(which by comparison with measurements on the plane jet boundary may
serve for the determination of ~)also is of interest.

The symbol ~ appears as the only empirical constant.

With the measured results on the plane jet boundary with zero outer
velocity (given by Tollmien (reference l+))as a basis, there results
with
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0.255 = - ~(-3) *

. ..

K = 0.01576 -

Examples:

In figure 8 the dimensions of the corresponding core region are
represented for the parameter values

ul-~
—= 1.0, 0.8,0.6,0.4,0.2

U1

Xk
Figure 9 contains the core lengths —, figure 10 the mixing

bk ro U1 - ~
widths — at the core end as functions of

r.
.

ul

Figure 11 shows the mixing widths ~- for the various parameter
r.

ul-~ x
values of ——

Lq
as functions of

~“

Figure 12 represents the angle of spread of the respective mixing

()d?)region
C=5X <=0 ●

Figure 13 represents U. =
1 as a function of

r

i
2s ‘1-%

U1

ul-~ ul-l@
, with Tollmien’s value

U1
c = 0.255 for =

U1

defining quantity.

Figure 14 shows for the medium at rest
(

‘1-%

()

db
U1

as a function of ‘c .
z LO”

Figure 15 shows” U.

()
ro -

“’function of c=’% ~ ●

~ o
‘o

1 being the

)= 1 the quantity

‘&asa

,, ., ,

,. . .; .-

Ic
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Figure 16, finally, contains the limiting value

necessary for calculation of the integrand in

.!.

III. COMPARISON WITH MEASUREMENTS

Measurements on a free jet issuing from a nozzle and spreading in
moving air of the same temperature do not exist so far.

In order to test the theory by experiment, a measurement for the

‘1-%
case = 0.5 was performed at the Focke-Wulf plant.

U1

The measurements were carried out with the test arrangement with
the 5 millimeter nozzle described in reference 5. A certain experi-
mental difficulty was experienced in producing temperature equality in
the two jets; it was achieved by regulation of the combustion chamber
temperature with the teBt chamber pressure pk and the probe pres-
sure Ps kept constant. However a perfect agreement of the jet tem-
peratures could not be accomplished inasmuch as the temperature measure-
ment performed with a thermoelement” is rather inaccurate in this low. .
region.

The test data were:

Outer jet:

Static pressure
‘k

= -100 mmHg
(Measured relative to atmospheric pressure)

R~om temperature to = 20°

Barometer reading PO = 754.5 mmHg
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Inner Jet:

Total pressure p~ = 340 mm Hg
(Measured relative to atmospheric press~e

,.S

Stagnation temperature ts = 59°
,,

The evaluation of the mea’sured values was made according to the
adiabatic

K-1

()%K
—.

‘1”= T2~

and the efflux equation

35

with constant static pressure assured in the mixing region.

Due to the imperfect readability of the thermoelement which, as
mentioned before, is too rough for smaller temperature differences, it
was impossible to measure the distribution of the stagnation tempera-
tures over the mixing region. For the evaluation a linear drop of the
stagnation temperatures along the mixing width.was assumed.

For the outer jet there

tA = 9°

for the jet issuing from the

ti = 13°

The inner jet therefore has,

resuits

G
A

= 151 meters per second

inner nozzle

Gi = 302 meters per second

compared to the outer Jet, an excess

temperature of

was obtained.

Figure lj’

4°. For the velocity ratio the result
ul-~

= 0.5
u,

J.

“P pk
~+—
pB pB

shows the total pressure distribution .
{~s ‘P~\

>

\
-+-
PB /‘B central

I
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made dimensionless with “the central value, for the various test sec-
tions. The section near the nozzle which still shows the character of
a turbulent pipe flow is represented in figure 18. Figure 19 shows,
in addition, the variation of the total pressures along the jet axis.

Figures 20 to 22 contain the corresponding representations for the
velocities made dimensionless by the velocity U1 of the jet issuing
from the nozzle.

As to the comparison with the theory, it must be noted that the
velocity distribution at the exit from the nozzle is not rectangular,
as assumed in the theory, but that it represents the profile of a
turbulent pipe flow. (Compare fig. 21.) Hence it proves necessaryto

introduce the conception of the “effective diameter” in contrast to the
geometric diameter. .

We define the effective nozzle diameter as the width of the
rectangular velocity distribution of the amount U1 which is equiva-
lent to the existing momentum distribution. That is, we calculate the
effective nozzle diameter from the equation

with the integral, which according to the theorem of conservation of
momentum represents a constant, to be extended over an arbitrary cross
section.

In our case the integration over the cross
nozzle yields

‘effect. = 0.945rgeom.

r
Whereas the plotting over q =

- ‘geomo lets
x

as still lying on one curve, the plotting over

section near the

the test points appear
r- ‘effect.

T = Y

results in a stagger of the velocity distributions with increasing ~
r.

toward negative q. This stagger toward negative q expresses the

immediately obvious fact that the isotacs of the flow field are curved
toward neg~tive q (toward the Jet axis).

Figure 23 contains the theoretical curves for

(the core end); in addition, the test points of the
limeters and x = 45 millimeters were plotted. The

x Xk

—=0 and~
ro
sections ?x = O mil-
agreement appears
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to be good as far as the velocity gradient and the orientation in
space in the central mixing region are concerned; the agreement in the
transitions toward the jet core and the surrounding medium is less
satisfactory. Deviations in these transitions are essential charac-
teristics of the more recent Prandtl expression, but are caused here
probably mainly by the approximation character of our developments.

For the core length there results according to the theory a value
of Xk = 22.0reffectj whereas the measurements along the jet axis

(compare fig. 22) result in about Xk =.+= 20.1reffecto”.
.

It has to be noted that the experimental d&&nnination of the core end
is affected by some uncertainty.

IV. SUMMARY

The spreading of a free rotationally symmetrical jet issuing from
a nozzle represents a turbulent flow state.

The theoretical investigation is based on the more recent Prandtl
expression ~ = ~b %x - ~in for the momentum transport. The

continuity equation and the equation of momentum are at disposal for
calculation of the velocity distribution. In case of limitation to

(

U1-uo
s&ll disturbances small quantity, where ul is jet exit

U1 \
velocity, ~ velocity of the surrounding medium the equation of
momentum may be linearized )

An approximate solution is constructed which is characterized by
the fact tht in boundary zones of the region as well as along the jet
q = O in the interior of the region it has to be regarded as exact
solution.

For arbitrary disturbances
(

‘1 - ‘o arbitrary > 0
)

the initial
U1

profile which corresponds to the “velocity distributions of two mixing
plane jets is determined by the fact that the transverse component in
the jet core vanishes. The regularity found for snmll disttiba”nces is
taken as a basis for the further development of the ’profile from this
initial profile.

.
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The transverse component of the flow is determined from the con-
tinuity equation, with the use of the approximate function for the
velocity component in the main flow direction. For simplicity a linear
course of mixipg width is assumed.

The dimensions of the mixing region (limiting curve of the jet
core d(x) and mixing width b(x)) are approximately calculated from
the theorem of momentum

(ii- UOVT-,-&~mti(.-~)r dr) (= I-Txy)
r

(. rttb(x) U1 - UO) ~

under assumption of

over ~, where q =

a rectilinear course of the velocity distribution

r- d—e
b

In order to test the theory by experiment, a measurement was

U1-uo
perfo~ed for = 0.5 with a 5 millimeter nozzle. In order to

U1

carry out the comparison with the theory, the conception of the effec-
tive nozzle diameter is introduced which complies with the deviation
of the effective velocity distribution for an issuing jet from the
rectangular velocity distribution

2

(

r
.U1 U1 -

effect.
‘%) 2 =Jmfi(= - uo)r ‘r

The agreement between theory and experiment is satisfactory.
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APPENDIX

CALCULATION OF THE
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—

1

TRANSVERSE

)(‘o -
T +

l)+
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I

1

We substitute

( )J
PC] -[12—=——-;;; ;loe ()d[]++l+$

r.
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If we assume a rectilinear course of the mixing width b(x) , we
have al’ = O.

,.
;‘-<&W~t%en obtain”

The evaluation of the integrals yields

(a)

([:1= UITI-0.36 ‘1 - % )
+ us

U1

thus

““J
l-le-[]’ dq =& tJe-u2dcl ““ ‘“”

,,
-Vk -,: J‘1 u. .,

[

‘1 - ‘o 1[10 = UJ-Q - 0.36 ~1 + u’f-,’.. -.,
.,”,,::, ,,

t
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1
[1 ~.[f

o
where

d[]= ~“F ,[121[]

thus

J’
n ‘-[32~q (=lWF,’

-Vk )ul 2 1 [J.+% ’-[jo

(b)

r’
n e-f12 dq

d -vk

[J=~lTI - 0=36U1;1%+U2

-’-%=2[j + 0.36 ‘l. ~1

L

This results in

(
U1 -u”

f

1 ‘-
‘J* c] du. -

a2 -

)!

0.36 ~
-n2 ~]=— e

U12 - alz

——-... —== . ,,, , “_:.- . .. ) ,.<;. . . .
-. .._ - ———.

. .,. ,:, ,.-. .,,. .,. .(

,. ..+-.: . ..-. ... ,.. ... ,$” , .,,’...’>”:-,.,.. ‘,.’ .- .,..
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I

Jv ,-u2vdv=A J’ -( )J‘] -[12 [ld[l U2-0.36u~ [le-[12d[1
-vk C’12 [Ioe ~12

[10

‘M-’~e-[]2):’:o - F“”y%kp’[]‘q])
o

J’
v

‘-[127 q = 1

(
)( h

‘1 - ‘o
1 =-[12 +; e-[lo2 - ‘2 - 0“362 Lq ~—-.

-nk Iq 22 ~ F1’ +,!”
U1 [1 1-[lo

(c)

2dq

!

J1’ -[12 [12d[1=—

(’

&02 - 0.36 z
)J

‘-[ 12
D13 rs13 U1 []d[]+

.
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‘[12 []2~[] =#[]e-[12+# e-[12~[]

thus

J
l-l

e-[12 ~2q j

( 7
=—-~[]”e-[l ‘] + 1 1 ‘]e-[12~[]

J (

2_a2-

-n ~ 1 [lo a13 2 [10
g13

+

If one

‘F1’ +F1t ~~ + u~
2

.( [1 )N-[10 %3 2

kZl$323(e-[]2’-e-[102)+q

- 0.36
)]

U1-%2
,U1

-!=
J=

substitutes these
T

expressions, one obtains for — the formula given in the text;U1 E
~

L

G

I



NACA TM 1311

APPENDIX
,,

NO. 2. FOR CALCULATION OF THE DIMENSIONS OF THE CORE REGION

The theorem of momentum with r.ro reads

. .

a$

( )()

ul-~
ro~b —

ul F r=r
o

-dWith the coordinate transformation q = ~ we obtain

ro-d

()

v 1 ~ d fi/U~
—

J [

-q2bb, -.-—
Ulrr ro ~ dq

‘o
1~(bd’ +b’d) - dd’ d~

We substitute

()~-%_wuo
U1

Ul, (l-n)

‘1
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?3hG ‘“.

()1 =1-’-%2 =-E y
This results in

J’ J1

(bd’ +b’d) “ ~ d~ + dd’ “ dq
o 0 ..-

d

()q-=02= -r~—
0 U1
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If one evaluates the integrals, one obtains

““F+k)r=ro‘o”= -(V),k-+$+=-r+
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If we insert these expressions into the equation”of momentum and
order, we obtain

wJ)(ro;‘D+‘b”‘b’’’prr”b”b-‘)’+.

‘K”)’(ro;‘)-(VT; ‘)’
wwr”~d]=-rduw’
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L

— —

()ro-d

b -1 ()U1-llo
= -rlc

o U1

Translated, by Mary L. Mahler
National Advisory Committee
for Aeronautics

,.,
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Figure 4.- Transverse component distribution.
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